Utilizing Mobile Treatment Systems to Capture Lost Profits Resulting from Flared or Reprocessed Fuels

Jeff St. Amant
President/CEO

Bryant Woods
Lead Project Engineer
Objectives

• Executive Overview
• Review of New Impacts
• Technology Overview
• Case Study
Executive Overview

• Operational shortfalls and maintenance activities can create a need for the reduction/removal of hydrogen sulfide and other sulfur compounds from fuels that are downgraded, flared, and reprocessed.

• A need exists to economically assist in the treatment of certain sulfur compounds from fuels.

• Vapor Point’s modular and mobile treatment approach has proven successful in helping recapture lost profits.
Impacts Review

Several factors have created the need for fuel treatment:

• Tier III Fuel Standards (gasoline total sulfur down to 10 ppm)
• Off spec product specifications (downgraded products)
• Maintenance activities where plant treatment processes are offline
• Overcapacity of internal treatment processes
Technology Overview

- Vapor Point’s core VOC recovery technology, the VaporLock™, provides an efficient system for contacting and disengaging fuel and targeted selective chemistries.

- Our partnership with Baker Petrolite (BHGE) provides for the development of specialized chemistries only useable in the VaporLock™.
Keys to Effectiveness

- Mixing energy created by VaporLock™
- Mixing disengagement and separation effectiveness of VaporLock™
- Chemistry selection and effectiveness
Case Study

• Gulf Coast Refiner had a pressure relief valve, that when over pressured, would route off spec Y-Grade high in \(\text{H}_2\text{S} \) and other sulfur compounds to the plant flare.

• Client originally believed vent gas was comprised totally of Y-Grade mix.

• Y-Grade was routinely sold as downgraded product resulting in lower profitability for the client.

• Regulatory driven issues resulted in the recovery of high value on spec Naphtha and Y-Grade.

• Vapor Point solution solved client’s product quality issues, resulting in improved profitability to client.
Client Challenges/Criteria

Original Defined Client Criteria:

- Maintain safe working environment for all employees
- Meet sulfur reduction requirements for flare emissions
- Manage process to minimize impact on operations

Current Defined Client Criteria:

- Priority 1 = Safety
- Recovery of naphtha
- Reduction of Sulfur in both Naphtha and Y-Grade Streams
- Maintain copper strip test of 1A or 1B
Utilizing Mobile Treatment Systems to Capture Lost Profits Resulting from Flared or Reprocessed Fuels
Case Study Results

Y-Grade (Gas Phase)

- H_2S concentrations ranged from 300-880 (avg. of 450) resulting in a copper strip test of 4.
- Post treatment H_2S is less than 1; while copper strip test of 1a or 1b.

<table>
<thead>
<tr>
<th>Y-Grade Treatment</th>
<th>H_2S</th>
<th>Mercaptan</th>
<th>Carbonyl Sulfide</th>
<th>Copper Corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>482.2</td>
<td>81.3</td>
<td>4.2</td>
<td>4</td>
</tr>
<tr>
<td>Outlet</td>
<td>ND</td>
<td>25.6</td>
<td>ND</td>
<td>1</td>
</tr>
</tbody>
</table>
Case Study Results

Naphtha Treatment (Liquid Phase)

- Approximate treatment flow of 485 bbd.
- H_2S and other sulfur contaminates in product resulted in copper strip test of 3-4 typically.
- Treatment resulted in copper strip of 1a or 1b.

Y-Grade Treatment

<table>
<thead>
<tr>
<th></th>
<th>H_2S</th>
<th>Mercaptan</th>
<th>Carbonyl Sulfide</th>
<th>Copper Corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>482.2</td>
<td>81.3</td>
<td>4.2</td>
<td>4</td>
</tr>
<tr>
<td>Outlet</td>
<td>ND</td>
<td>25.6</td>
<td>ND</td>
<td>1</td>
</tr>
</tbody>
</table>
Other Design Considerations

• Upstream contaminates from carry over amine, merox, or other treatment processes can lead to fouling.

• Defined sulfur species can result in a multi-stage process for the conversion/extraction/absorption of different sulfur compounds.

• Contaminated fuel gases used in process can lead to negative impacts on product quality and process infrastructure.
Utilizing Mobile Treatment Systems to Capture Lost Profits Resulting from Flared or Reprocessed Fuels
Questions?